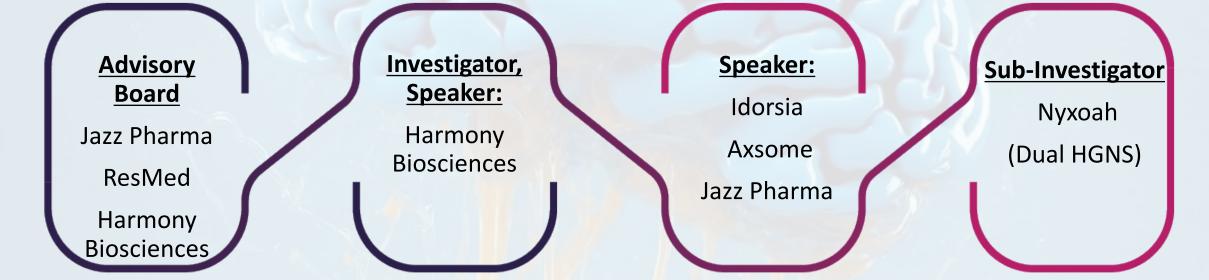
Everything that is sleepy may not Snore: Part 1

A closer took at Narcolepsy

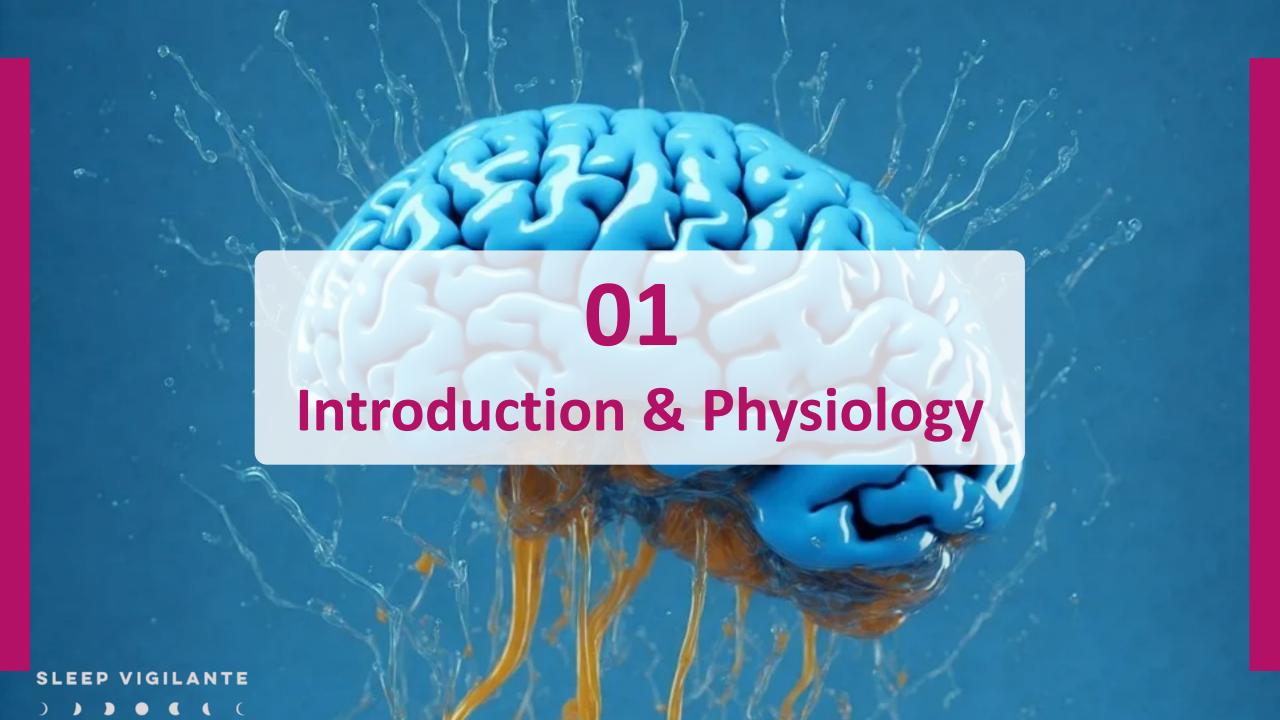
Abhinav Singh MD, MPH, FAASM

Medical Director, Indiana Sleep Center
Associate Clinical Professor, Marian University
Sleep Physician, NBA, Indiana Pacers, Indiana Fever
Author: Sleep to Heal

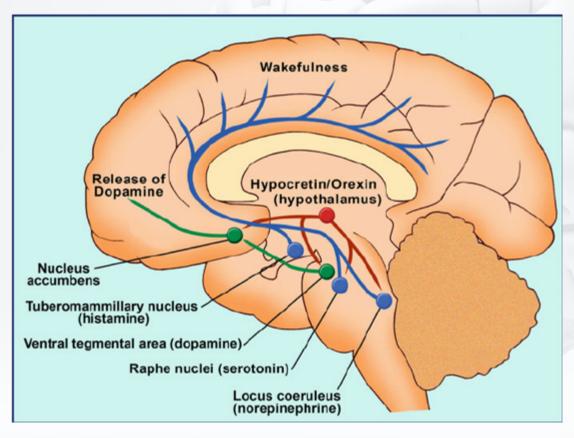

October 4, 2024, Indianapolis

Conflicts of Interest

Content of this lecture does not involve conflicts listed below.


All possible conflicts have been duly resolved.

Plan of Action





Introduction & Physiology

WAKEFULNESS

SLEEP

LEEP VIGILANTE

Source: NINDS

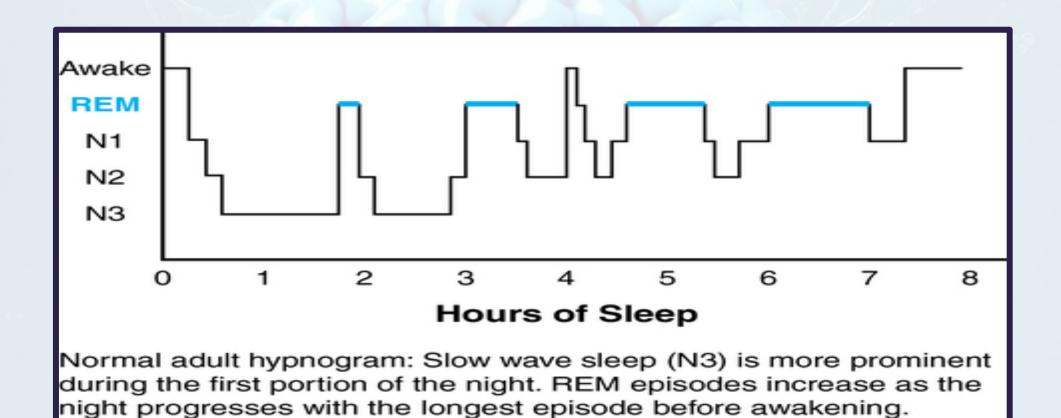
Why Sleep?

(NREM) 75% Stage 1 Stage 2

Stage 3
Stage 4

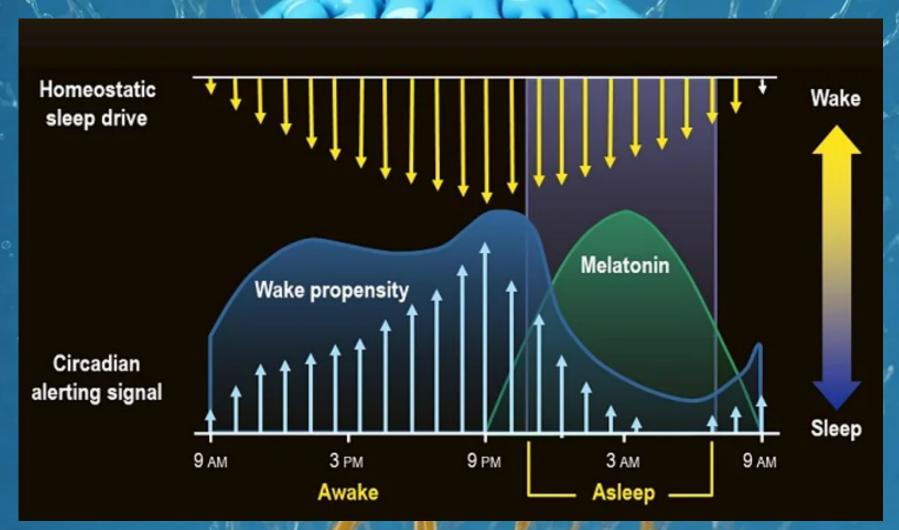
Rest, Recovery, repair, Memory

Metabolic restoration, regulation, Immunity

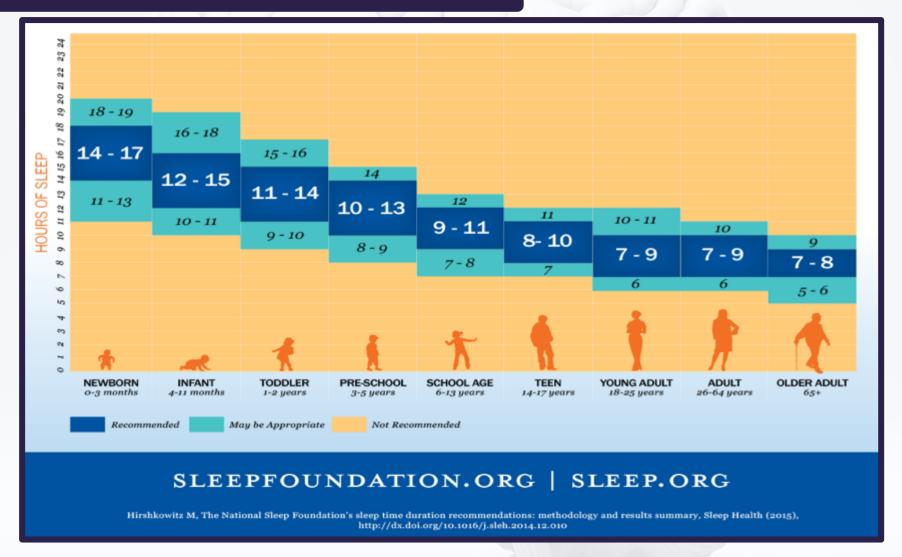

(REM) 25 % Phasic eye movements

Loss of muscle tone

Active state of brain


→ Learning ,
Memory/ Mood
regulation

Sleep - 1/3 of your life!



02 Sleep: How much & how?

HOW DO WE SLEEP? – 2 PROCESS MODEL

HOW MUCH?

03 Approaching a Pt. with Excessive Daytime **Sleepiness**

Causes: Excessive daytime sleepiness

Excessive Daytime Sleepiness

REDUCED SLEEP

Shift work,
Poor Sleep Habits

MEDICAL & PSYCHIATRIC DISORDERS

Anxiety, Depression, Hypothyroidism, Anemia, Parkinson's

MEDICATIONS

Sedatives,
Analgesics,
Antidepressants,
Alcohol

SLEEP DISORDERS

OSA, Narcolepsy, Insomnia, Circadian, Parasomnias

SLEEP VIGILANTE

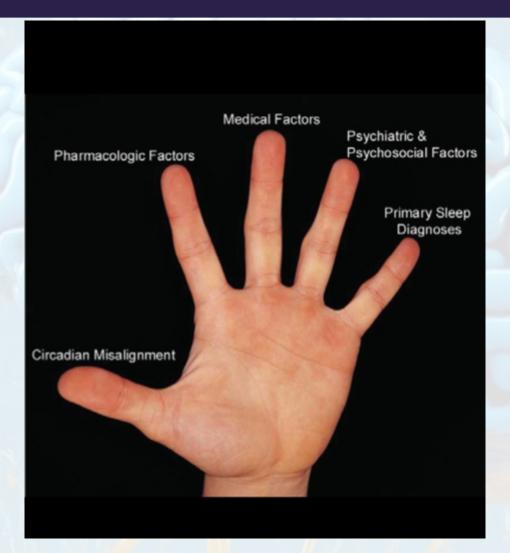
SLEEP DISORDERS

Sleep-Related Circadian Rhythm Central Disorders of Sleep-Related Other Sleep Insomnia Breathing Parasomnias Sleep-Wake Disorders Hypersomnolence Movement Disorders Disorders Disorders[†] NREM Parasomnia REM Parasomnia Obstructive Central Sleep Apnea Sleep Apnea

Idiopathic

Hypersomnia

Narcolepsy


Type 1 + Type 2

American Academy of Sleep Medicine. International Classification of Sleep Disorders. 3rd ed., Text Revision; 2023

Kleine-Levin

Syndrome

TOOLS- On your fingertips!

TOGETHER We Will Learn!

hypersomnia predisposition stimulants polysomnography hypocretin hypocretin fragmented cataplexy diagnosis cognitive nocturnal hallucinations management onset episodes circadianonset REM MSLT orexin NARCOLEPS Y neurological genetic disorder suddendisrupted sleepiness rhythm suddendisrupted sleepiness daytime paralysis lifestyle medication attacks uncontrolled behavioral autoimmune amphetamines hypothalamus neurotransmitter

Clinical Features-

Sudden partial or complete loss of Muscle tone (< 2-3 min). Consciousness intact. Often Face. limbs. Triggered by strong emptions; laughter. All Type 1

Dreamlike experiences (Visual) occurring at the transitions of sleep-wake (33-80%)

xcessive Daytime Sleepiness

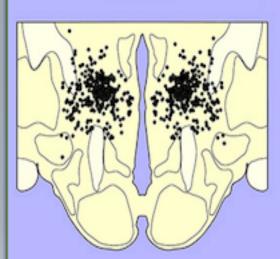
100 % of all Narcolepsy patients. ESS > 10; often 15 or greater

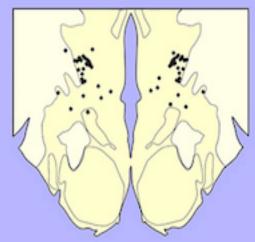
S leep Paralysis

disturbing, temporary inability to move voluntary muscles or speak during sleep-wake transitions (25-50%)

S leep Disruption

Sleep Fragmentation / Arousal index $3 \times higher$. (30-95 %)


Narcolepsylink.com – CHESS PNEMONIC

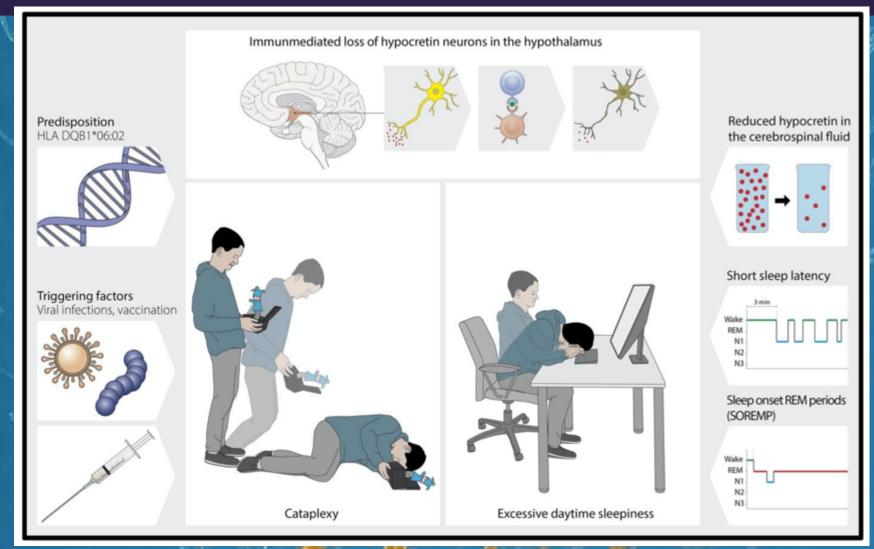

ROLE OF OREXIN / HYPOCRETIN

OREXIN / HYPOCRETIN – LATERAL HYPOTHALAMUS

Normal

Narcolepsy

Courtesy: Stanford


Caused by a **lack of orexins** (hypocretins)

Orexin: Neuropeptides that help sustain alertness & prevent REM sleep from occurring at the wrong times.

Genetics, & triggering infections or inflammation

Play important roles in the development of narcolepsy.

Patient with Narcolepsy

Chronic Neurological disorder with Impaired SLEEP-WAKE STABILITY

NARCOLEPSY TYPE 1 (With Cataplexy)

+ + + Excessive Daytime Sleepiness + + + Cataplexy (Present)

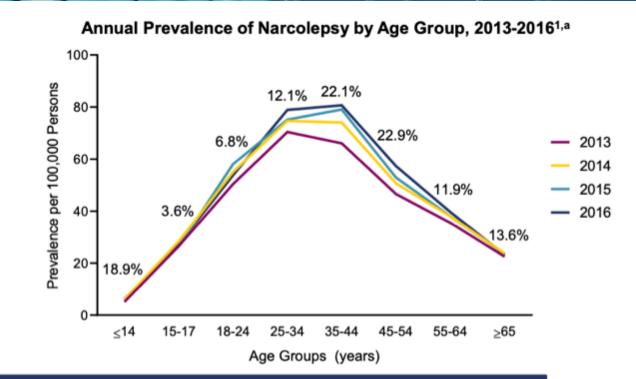
> +/- Hallucinations +/- Sleep Paralysis +/- Automatic Behaviors

Upto 95 % of Hypocretin Neurons lost Low CSF Hypocretin - (<110 pg/mL)

NARCOLEPSY TYPE 2 (Without Cataplexy)

+ + + Excessive Daytime Sleepiness
Cataplexy (Absent)

+/- Hallucinations +/- Sleep Paralysis +/- Automatic Behaviors

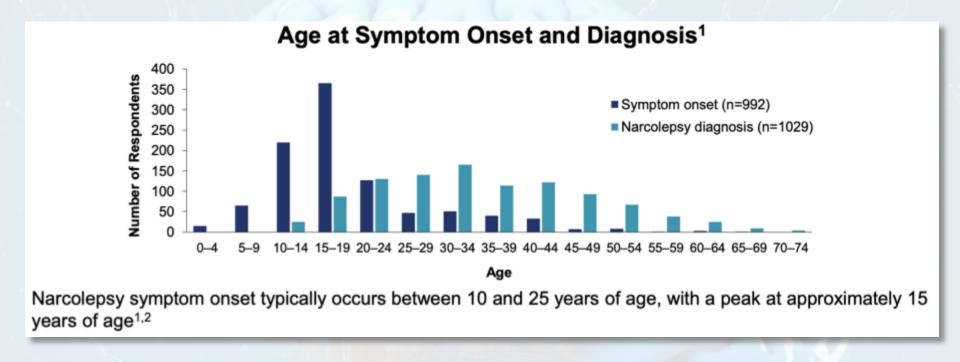

Etiology – Unclear

Only 24 % may show reduced Hypocretin

Conversion to Type 1 Possible

US Prevalence of Narcolepsy: ~ 1 in 2000

- Estimated annual US prevalence of narcolepsy was 38.9 per 100,000 persons in 2013 and 44.3 per 100,000 persons in 2016 (per US insurance claims 2013–2016)¹
 - This represents an increase of 13.9% over the study period
 - It is unclear whether this increase reflects increasing prevalence of narcolepsy or increased awareness of narcolepsy among healthcare providers



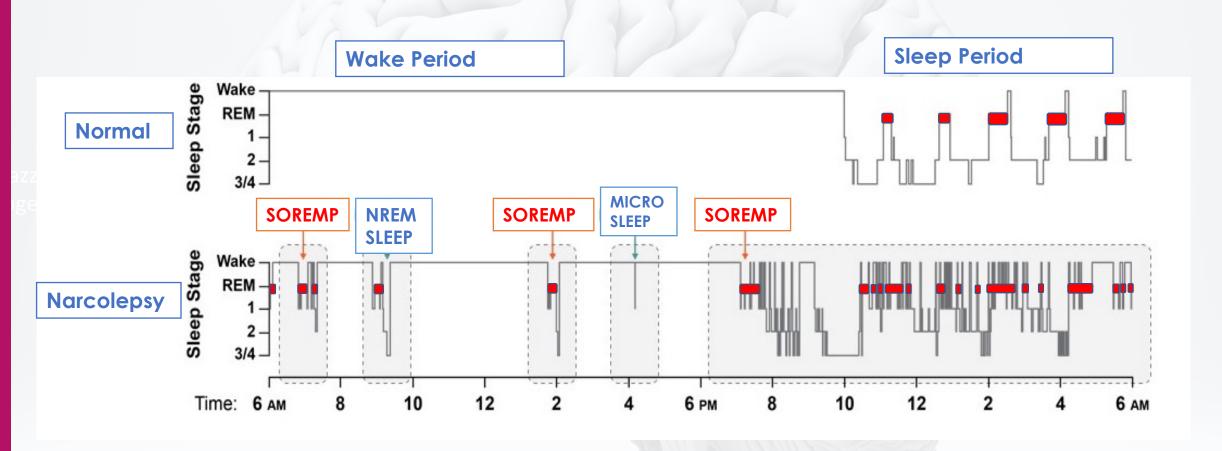
The estimated national estimate for 2016 was approximately 142,000 prevalent cases¹

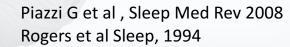
^aPercentages are change in prevalence from 2013 to 2016.

1. Acquavella J, et al. J Clin Sleep Med. 2020;16:1255-1263.

Age at Symptom Onset & Diagnosis

- Symptom onset 10- 25 yrs of age
- Symptoms going unrecognized, particularly in children, can cause delays in diagnosis and treatment
- 1. Thorpy MJ, Krieger AC. Sleep Med. 2014;15(5):502-507. 2. American Academy of Sleep Medicine. Narcolepsy type 1.

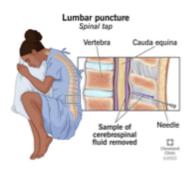




Do Patients with Narcolepsy Sleep well?

Narcolepsy: Chronic Neurological Disorder Sleep wake instability

DIAGNOSTIC TOOLS


History & Physical

- Excessive Sleepiness (ESS) +/- Cataplexy
- Sleep Studies

Spinal Fluid testing- Hypocretin

HLA testing

Polysomnography & Multiple Sleep Latency Test

PSG – Overnight

Sleep Latency	Shorter than normal	
REM Latency	Shorter than normal	
SOREMPs	Present within 15 min of sleep onset	
Other	- Fragmented REM sleep- Frequent awakenings- HIGH Sleep stagetransitions	

MSLT- Daytime Nap Test

On 4 or 5; 20 min Naps SOREMPs 2 or more during MSL	
SOREMPs 2 or more during MSL	
	Т

ICSD 3rd ed., Text Revision; 2023

CSF- Hypocretin

CSF Hypocretin-1 Level	Interpretation	Clinical Significance
≤ 110 pg/mL	Low/Deficient	Diagnostic for narcolepsy type 1 (NT1)
111-200 pg/mL	Intermediate	May indicate NT1; requires further clinical evaluation
> 200 pg/mL	Normal	Typical for healthy controls; does not rule out narcolepsy

Test Characteristics	Value
Sensitivity for NT1 (≤110 pg/mL cutoff)	60%-88 %
Specificity for NT1 (≤110 pg/mL cutoff)	98%
Best cutoff for NT2 diagnosis	~200 pg/mL

HLA- DQB*0602 or DR2 Test

HLA typing can be used since there is a strong correlation of narcolepsy in individuals with cataplexy when human leukocyte antigen typing is positive for DQB*0602 or DR2.

Table 1 - Prevalence rates of HLA and hypocretin-1 in the CSF

Diagnosis	HLA-DQB1*0602 positive	Hypocretin - 1 ≤ 110pg/mL
Narcolepsy with	> 90%	85 -90%
cataplexy		> 90% HLA positive
Narcolepsy without	40-60%	10-20%
cataplexy		(almost all HLA
		positive)
General population	12-34%	-

Narcolepsy Types 1& 2 & Idiopathic Hypersomnia

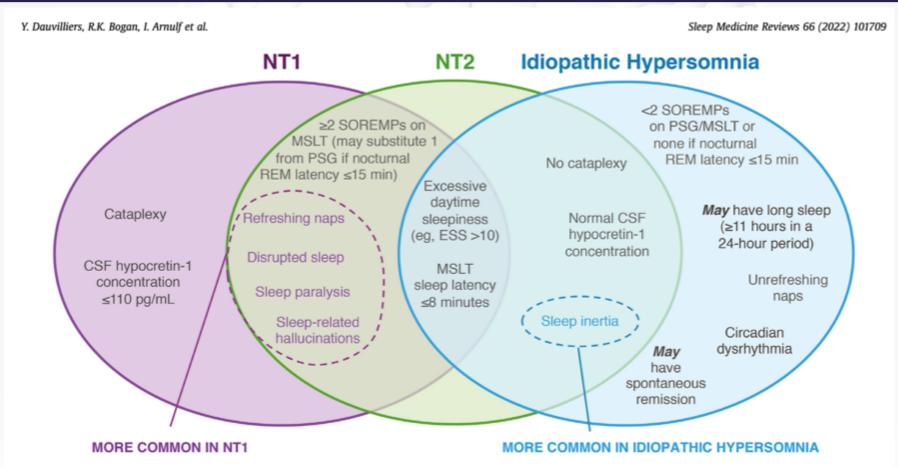
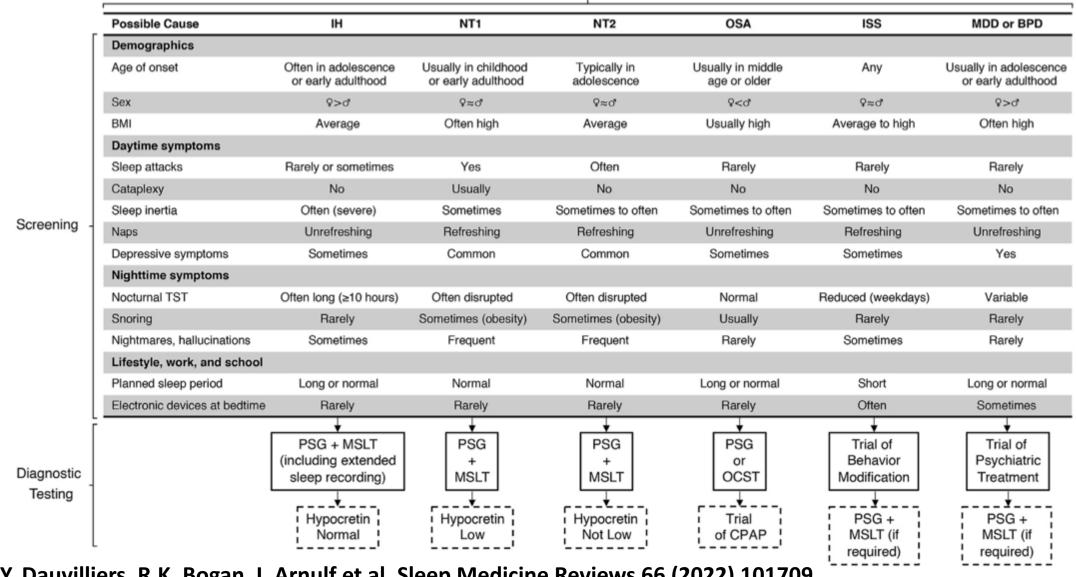



Fig. 2. Diagnostic Features of NT1, NT2, and Idiopathic Hypersomnia [2,12,27,105,106]
CSF, cerebrospinal fluid; ESS, Epworth Sleepiness Scale; MSLT, multiple sleep latency test; NT1, narcolepsy type 1; NT2, narcolepsy type 2; PSG, polysomnography; REM, rapid eye movement; SOREMP, sleep onset rapid eye movement period.

INITIAL COMPLAINT of Excessive Daytime Sleepiness

Y. Dauvilliers, R.K. Bogan, I. Arnulf et al. Sleep Medicine Reviews 66 (2022) 101709

06 TREATMENT OF NARCOLEPSY

TREATMENTS of NARCOLEPSY

BEHAVIOURAL TREATMENTS

> Consistent Sleep Wake Pattern to align with Circadian Sleep Wake Schedule

- > Naps, Strategic short naps can be helpful.
- ➤ Driving safety (Avoid 4 Ds)

> Exercise regularly

> Medic Alert Bracelet

Excessive Sleepiness: Stimulants

Drug	Dose	Mechanisms of Action	Efficacy	Side Effects
Methylphenidate IR, ER (e.g. Ritalin, Focalin, Concerta) Schedule II Pediatric Narcolepsy	-10-30 mg/day IR BID, TID -ER (18- 54 mg) -Appx 1 mg/kg/d ay	DAT inhibitor (inhibits DA reuptake) Duration of action: 3- 5hours(IR); 6-12 hours (ER); 2-8 hours (SR)	ESS: no data MWT: 2.9 min improvement (95% CI: -2.9 to 7.8) Observational Study	irritability, headaches, insomnia, GI upset, hypertension, arrhythmias, anxiety, psychosis
Mixed amphetamine salts (Adderall) Schedule II Pediatric Narcolepsy	5-40 mg/day BID-TID or ER -Appx 0.5 mg/kg/d ay	 DAT inhibitor (inhibits DA reuptake); increases DA from presynaptic cleft Duration of action: 4-6 hours (IR); 8-12 hours (XR) 	ESS: 5 points improvement (95% CI: 3.4 to 6.6) Observational Study	same, reduced appetite, weight loss, psychosis (2x higher than MP)* *Moran LV NEJM 2019
Lisdexamphetamine (VyvansPero) Schedule II	20-70 mg/day	Duration of action: 8-12 hours	ESS: 8 points improvement; Case series	Same, hyperhidrosis, skin rash, dry mouth

Excessive Sleepiness: Wake Promoting Agents

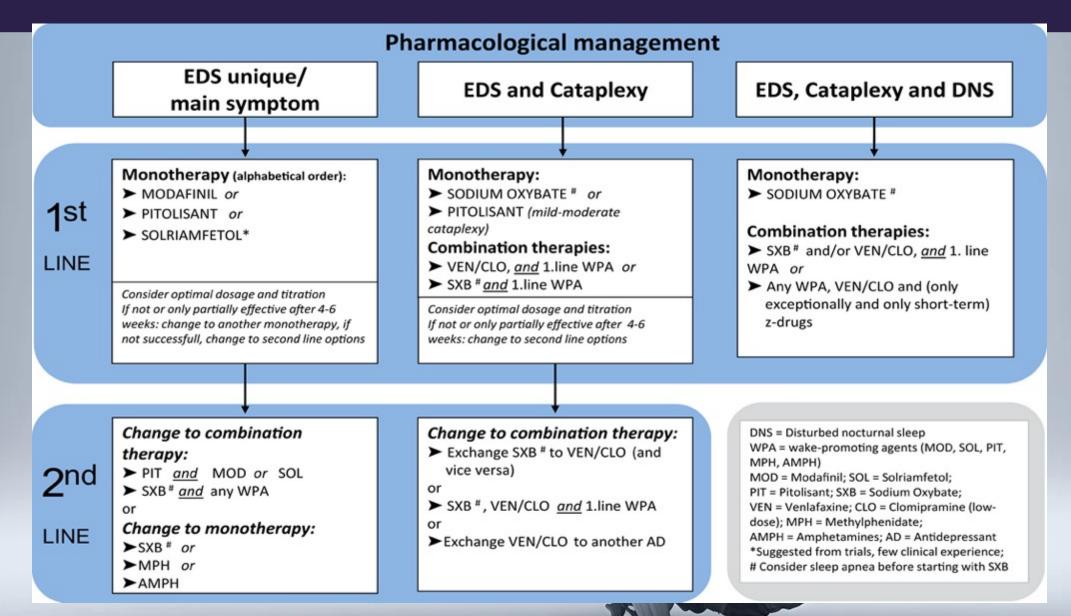
Name & Dose	Mechanisms of Action	Efficacy	Side Effects
Modafinil (Provigil) 50-200 mg BID (morning & afternoon)	R,S, enantiomer Weak DAT Inhibitor , inhibit DA reuptake Tmax: 2-4 hrs; T1/2: 15 hrs	ESS: 2.8 (95% CI:1.7-3.8) improvement MWT: 4.1 min (3.4-4.8) 7 RCTs	Headache, nausea, nervousness, HTN, insomnia, rash, psychosis**, SJS**, dyspepsia, OCP interaction
Armodafinil (Nuvigil) 50-250 mg qAM	Longer acting R- enantiomer, Weak DAT Inhibitor, inhibit DA reuptake Tmax: 2 hrs; T1/2: 15 hrs. Higher [plasma] in afternoon*	ESS: 4.7 (95% CI 7.4- 1.9) improvement MWT: 3.3 min (1.1-5.5) Observational studies	Same
Solriamfetol (Sunosi) 75-150 mg qAM	DAT and NET Inhibitor , Inhibit DA & NE reuptake Tmax 2-3 hours; T1/2: 7 hours	ESS: 3.8 (95% CI 5.1-2) Improvement MWT: 9.5 min (6.3-12.7) 3 RCTs	
Atomoxetine (Strattera) 10-50 mg qAM (Unscheduled)	Inhibits NE reuptake Tmax 1-2 hours; T1/2: 5-8 hours	NA	Similar to stimulants but lower frequencies

DAT = Dopamine Transporter, NET = Norepinep

Maski, K, Sleep 2024

EDS & Cataplexy

Name & Dose	Mechanisms of Action	Efficacy	Side Effects
Sodium Oxybate (Xyrem , generic) 2.25-4.5 g twice nightly	?; GABA-B agonist	ESS (3-9 g): 1.5-3.3 point improvement on RCT & ESS: 5.9 point improvement (7.2 to 4.5) on observational MWT: 3.8 min (1.2 to 6.4) Weekly cataplexy: 9-86% reduction 5 RCTs, multiple obs	REMS: OSA/hypoventilation, depression, SI, psychosis, driving safety, Dizzy, nausea, enuresis, headache, weight loss
Sodium Oxybate Once nightly (Lumryz) 4.5-9 g bedtime	?; GABA-B agonist	ESS (6-9 g): 2.1-3.9 point improvement MWT (6-9 g): 5-6.1min improvement Weekly cataplexy (4.5-9 g): 2.7- 6.7 reduction - 1 RCT	REMS: Similar AE profile Meskill G et al. Abstract SLEEP 2024. Reason for switch 38% not awake for second dose;
Low-salt Oxybate (Xywav) 2.25-4.5 g twice nightly	?; GABA-B agonist 131 mg vs 1640 mg SALT@9 Gm	ESS: Placebo 3 point worsening VS no change in LXB Weekly Cataplexy: 11.5 increase on cataplexy vs 0.1 LXB - 1 withdrawal RCT,	REMS : Similar AE profile,
Pitolisant (Wakix) 4.45-35.6 mg q AM 8 Week	H3-receptor antagonist/invers e agonist	ESS: 3.8 - 5.8 point improvement MWT: 2.1 to 4.3 minutes improvement Cataplexy: 37- 75% improvement -	HAs, insomnia, irritability, anxiety, nausea (all <10%); potential for QTc prolongation with SSRI/SNRIs
			Maski, K, Sleep 2024


Other agents: Cataplexy

Drug	Typical dose	Mechanism of Action	Side effects
Venlafaxine (Effexor)	37.5-325 mg XR q AM (IR formulation BID)	Inhibits 5-HT & NE reuptake	Serotonin syndrome, SI risks, Weight gain, nausea
Fluoxetine (Prozac)	20-60 mg q AM	Inhibits 5HT reuptake	Same, dry mouth, sexual dysfunction
Protriptyline (Vivactyl)	2.5-5 mg TID (max 60 mg/day)	Monoamine Reuptake Inhibitor (5HT, NE, DA)	Anticholinergic effects, Cardiac arrhythmia, abnormal LFTs
Clomipramine	25-75 mg q day	Monoamine Reuptake Inhibitor (5HT, NE, DA)	Anticholinergic effects (>10% constipation, dry mouth). Cardiac arrhythmia,

NEWER TREATMENTS

- Mazindol (likely DA) for EDS treatment
- Reboxetine (Selective inhibits NE reuptake, DA modulator) for treatment EDS and cataplexy
- Samelisant H3 inverse agonists/antagonists
- Orexin 2 receptor agonists (Takeda / Merck)

Management of Narcolepsy in adults: European Guidelines

Hypersomnias: NARCOLEPSY & IDIOPATHIC HYPERSOMNIA

HALLMARK FEATURES

- > KEY COMMON FEATURE **©**
- Excessive daytime sleepiness (EDS)
- Narcolepsy can involve cataplexy (sudden muscle weakness), sleep paralysis, & hallucinations (visual) around sleep onset/offset.
- ➤ IH often involves severe difficulty waking up after sleeping (Profound sleep inertia) and LONG unrefreshing naps

DIAGNOSIS

- **DIAGNOSIS**
- Polysomnography (overnight sleep study) & multiple sleep latency test (MSLT).
- ► Both have < 8 min Mean Sleep Latency
- Narcolepsy has ≥2 sleep onset
 REM periods on MSLT, IH has < 2</p>
- Diagnosis is often delayed, taking8-22 years on average

COMMON MEDICATIONS & SLEEP IMPACT

Medication Class

Selective Serotonin Reuptake Inhibitors (**SSRIs**)

Serotonin-Norepinephrine Reuptake Inhibitors (**SNRIs**)

Monoamine Oxidase Inhibitors (MAOIs)

Mood Stabilizers

Stimulants

Common Medications

Fluoxetine (Prozac), Sertraline (Zoloft), Escitalopram (Lexapro)

Venlafaxine (Effexor), Duloxetine (Cymbalta), Desvenlafaxine (Pristiq)

Phenelzine (Nardil), Isocarboxazid (Marplan), Tranylcypromine

Lithium, Lamotrigine (Lamictal), Valproic Acid (Depakote)

Methylphenidate (Ritalin), Amphetamine salts (Adderall),

Adverse Effects on Sleep

Insomnia, vivid dreams or nightmares, drowsiness or fatigue, REM sleep disruption

Insomnia, **night sweats**, <u>REM</u> **sleep disruption**, daytime
drowsiness or fatigue

Insomnia, vivid dreams or nightmares, daytime drowsiness or fatigue

Insomnia, daytime drowsiness or fatigue, <u>REM sleep disruption</u>, nightmares or vivid dreams

Insomnia, delayed sleep onset, **shortened** total sleep time

COMMON MEDS & SLEEP IMPACT

Medication Class

Benzodiazepines

Tricyclic Antidepressants (TCAs)

Atypical Antipsychotics

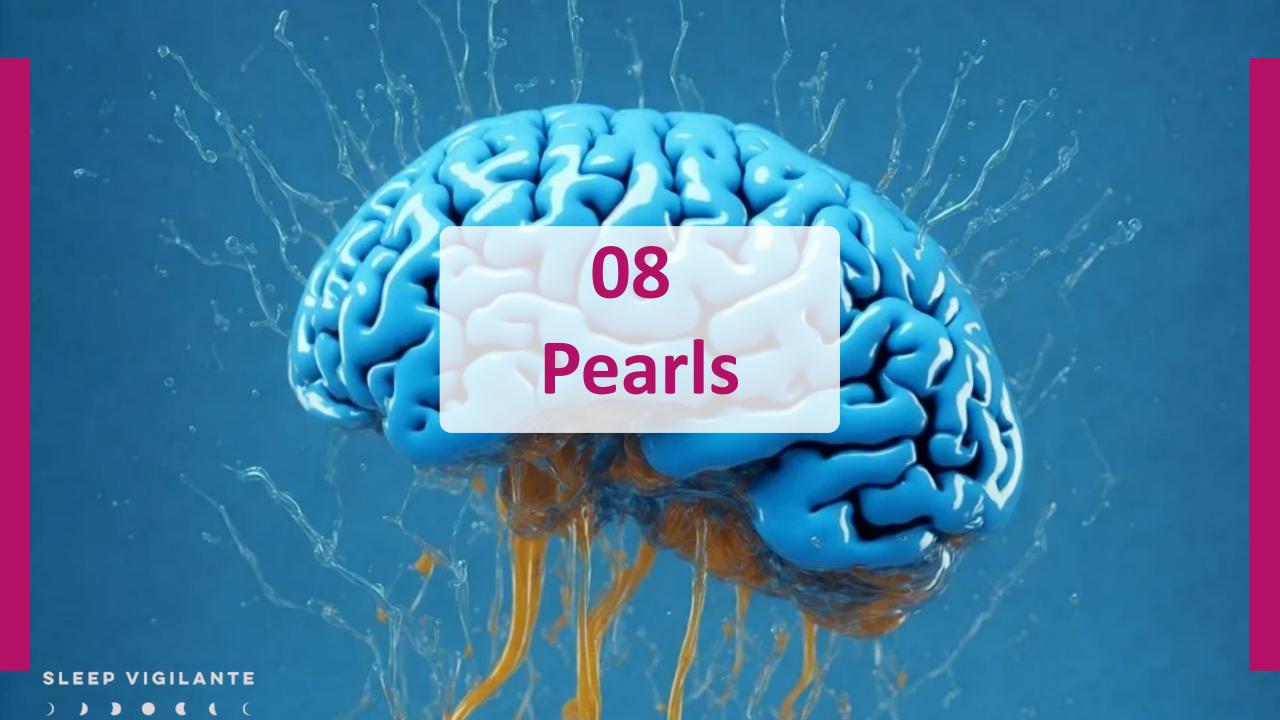
Common Medications

Alprazolam (Xanax), Diazepam (Valium), Lorazepam (Ativan)

Amitriptyline, Nortriptyline, Imipramine

Quetiapine (Seroquel), Olanzapine (Zyprexa), Risperidone (Risperdal)

Adverse Effects on Sleep


Sedation (may aid sleep),
Hangover effect, rebound Insomnia
REM & Slow wave reduction

Sedation (may aid sleep), daytime drowsiness or fatigue, nightmares or vivid dreams, <u>REM</u> <u>sleep disruption</u>

Sedation (may aid sleep), daytime drowsiness or fatigue, restless legs syndrome

MEDS WITH RELATIVELY FAVORABLE SLEEP PROFILES
Buspirone (Buspar), Bupropion (Wellbutrin), Vortioxetine (Trintellix)

Pearls: Narcolepsy

- •N Neurological condition: Chronic disorder affecting the brain's regulation of sleep-wake states.
- •A Associated comorbidities: Often coexists with other health issues, impacting overall well-being.
- •R Regulation of sleep-wake: The brain struggles to maintain both Sleep & Wake State Stability.
- •C Cataplexy: Sudden loss of muscle tone triggered by strong emotions; specific- Narcolepsy Type 1.
- •O OSA: Narcolepsy is the 2^{nd} most common diagnosis in sleep centers after (OSA).
- Loss of hypocretin neurons: Narcolepsy Type 1 \rightarrow 85-95% loss of these neurons.
- E Excessive Daytime Sleepiness (EDS): The cardinal symptom that significantly impacts daily life.
- •P Prevalence: Estimated at approximately 30-40 per 100,000 people (1 in 2000).
- •S Sleep diagnostic testing: PSG /MSLT or CSF Hypocretin
- •Y You can manage it!: Various Rx options available, research is promising for future therapies.

THANK YOU

All that is Sleepy May not Snore!

)) → • • • ((SLEEP VIGILANTE

Refresh, Restore & Revitalize 7 Simple Steps to Better Sleep INSIDE Treat Snoring and Sleep Apnea What to Do When You Can't Sleep - Enhance Creativity and Obesity and Sleep Loss Conquer Insomnia, Fatigue, and More mprove Intimacy and Relationships COVID-19 Aftershocks: Ways to Manage Narcolepsy and Long-Haulers ABHINAV SINGH, M.D. WITH CHARLOTTE JENSEN

BLANK

Pearls: Narcolepsy

- Chronic neurologic condition that affects the brain's ability to properly regulate sleep-wake states
 SLEEP & WAKE are affected)
- 2nd most common diagnosis in SLEEP CENTERS after OSA.
- Prevalence of narcolepsy is estimated at ≈30 -40 /100,000-----1 in 2000
- **NT 1** is associated with selective loss **of hypocretin** neurons (85% to 95%);
- Narcolepsy type 2 is **unclear**, ? partial loss of hypocretin neurons
- EDS is the cardinal symptom & cataplexy is the most specific
- Associated with comorbid conditions and negatively impacts general health and social, academic, and work performance
- Diagnosis of narcolepsy involves clinical evaluation and sleep diagnostic testing
- Many treatment options are available and more coming!

