Balancing Nutrition and Breathing

Maria Browning RD CNSC
IU Health Methodist and University Hospitals
Transplant and Adult Cystic Fibrosis

Objectives

- Define basic nutrition terminology and feeding routes
- Understand the relationship between malnutrition and respiration in chronic and acute illness
- Determine appropriate nutrition delivery for chronic and acute illness
- Review relationship between lung disease and micronutrients
- Understand the relationship between Glucocorticoid therapy and nutrition

Nutrition Terms and Feeding Routes

- BMI - Body Mass Index
 - 18.5-24.9 Normal; 25-30 Overweight; 30-35 Obese; >35+ morbid obesity
- Ideal Body Weight - wt associated with the lowest risk of morbidity and mortality
- Resting Energy Expenditure (REE) - calories expended for involuntary metabolism and inactive muscle
- Lean Body Mass (LBM) - body mass other than adipose tissue; muscle, bone and organ tissue
- Cachexia - "wasting" related to decreased appetite and intake, characterized by weight loss and muscle loss
- Enteral Nutrition - the provision of nutrients via the GI tract through a feeding tube
- Parenteral Nutrition - provision of nutrients via IV infusion for patients without a functioning GI tract
- Corpak/Dobhoff Feeding tube - a small feeding tube place past the pylorus into the small bowel
Balancing Nutrition and Breathing

Cyclical Process of Lung Disease and Nutrition

Impact of lung disease on nutrition - Obesity
- Lung disease can lead to sedentary lifestyle
- Sometimes decreased metabolic rate
- Medical therapy to improve lung function can lead to weight gain

Impact of Obesity on Lung Disease
- Obesity - increased work of breathing related to increased blood volume and tissue that requires oxygenation
- Overweight status not indicative of "well nourished"
 - Vitamin and mineral deficiencies which lead to increased infections or poor gas exchange
- Altered Pulmonary Functions related to obesity can be misleading
Impact of lung disease on nutrition
Underweight/Cachexia

- Malnutrition - decreased ATP production related to depleted stores of glycogen and phosphate
 - Often seen in groups with increased energy requirements
 - Lung disease can increase energy requirements because work of breathing increased
 - Work of breathing increases related to mismatched ventilation and perfusion - inefficient or decreased gas exchange
 - Poor gas exchange leads to poor O2 delivery to muscle in tissues causing muscle fatigue
 - Muscle fatigue leads to increased work of breathing

Malnutrition and Chronic Lung Disease

- Hypermetabolic related to increased work of breathing
- Decreased PO intake related to fatigue and SOB
- Increased Protein catabolism - related to depleted energy stores and decreased intake
- All lead to LBM depletions
Complications of Malnutrition in Chronic Lung Disease Independent of Weight

- Decreased Immune Response
 - Leads to increased pulmonary infections with decreased ability to repair lung fibers
 - Causes weakened and structurally abnormal lung matrix
- Decreased Surfactant Production
 - Result in dramatic increase in work of breathing
 - Can occur even if starvation period is short lived
- Compromised Antioxidant Protective Mechanisms
 - Protein, vitamin and mineral deficiencies leave tissues open to oxidation
 - Increases inflammation and release of free radicals and proteolytic enzymes

Additional Complications of Malnutrition

- Severe hypoalbuminemia
 - Not limited to underweight or cachetic patients
 - Decreased colloid osmotic pressure in capillaries
 - Increased edema/increased extracellular fluid space
 - Reduced intracellular fluid space and decreased functional residual capacity and pulmonary reserve.
Additional Complications of Malnutrition

- Refeeding Syndrome - occurs in a malnourished patient capable of anabolism after instituting adequate or supplemental nutrition
 - Characterized by low phosphorus, potassium, magnesium, fluid shifts and glucose abnormalities
 - Low phosphorus levels are best indicator of morbidity and mortality because of phosphorus involvement in energy production and O2 delivery.

Impact of Mechanical Ventilation on Nutrition

- Iatrogenic Malnutrition
 - Related to delayed initiation of nutrition support, holding tube feeds for test or intolerance, or inadequate provision of calories
 - Refeeding syndrome
- Pulmonary Edema - related to change in capillary pressure at the point of gas exchange: Heart failure, infection or inflammation
 - Impaired gas exchange
- Increased gastric pH
- Increased aspiration risk - increases as PEEP increases

How Do We Minimize Complications of Malnutrition in Patients with Chronic and/or Acute Lung Disease?
Balancing Nutrition and Breathing

Provision of Adequate Calories
- Overfeeding leads to excessive CO2 production
- Underfeeding leads to inadequate energy production
- PO diet vs Nutrition support dependent ventilation status and degree of malnutrition
 - NG/OG vs Dobhoff/Corpak vs long term enteral access such as PEG or PEGJ vs parenteral nutrition

Nutrition Support Route
- Enteral always preferred over parenteral
- Weigh risks and benefits of feeding stomach vs small bowel
 - If nutrition administered via small bowel there is a decreased risk of tube feeding aspiration to lungs, but increased risk of bacterial growth in stomach related to increase in gastric pH
 - Current ASPEN guidelines suggest gastric feeds are safe unless there is evidence of gastric intolerance
 - Reduce risk of aspiration with gastric feeds by raising HOB to 30° - increased wound risks
 - Use continuous infusion rates as opposed to bolus feedings
 - Use of Prokinetic agents - reglan or erythromycin

Choosing a Formula
- "Patients with ARDS and severe acute lung injury (ALI) should be placed on an enteral formulation characterized by an anti inflammatory lipid profile (omega3 fish oils, borage oil) and antioxidants."
 - Grade A
- Traditional Pulmonary Formulations
 - High fat to carbohydrate ratio, thought to promote weaning from ventilator
 - No conclusive evidence of decreased ventilator days
 - Key study indicated that overfeeding was more indicative of prolonged ventilation
How much is enough?

- Estimate REE through various methods and calculations
 - Indirect Calorimetry - gold standard, but many limitations
 - Harris Benedict Equation - tends to underestimate needs in COPD patients
 - 25-30 kcal/kg
 - Mifflin St Jeor equation, Penn State Equation, Ireton-Jones equation etc.
 - Calculation chosen based on patients current clinical condition and obese vs non-obese patients

Feeding Rates and Schedules

- Rate dependent on ventilation status, other caloric infusions, type of formula and tube position
 - MIV, sedation
 - Calorically dense formulas run at a lower rate
 - Stomach can handle larger volume than small bowel
- Continuous vs Nocturnal vs Bolus feeds
- Trophic or Goal Rate

Adjusting PO diet

- Decrease intake related to:
 - SOB, early satiety
- Consider smaller more frequent meals
 - Avoid overeating
- Encourage adequate intake early in the morning for energy to last throughout the day
- Avoid foods that cause bloating
- Decreased Na to reduce swelling and total blood volume
Balancing Nutrition and Breathing

Eating to achieve wt goals
- 3500 kcal=1lb
 - Add or subtract 500 kcal/day to gain or lose 1lb/week
- Sometimes calorie goals must be adjusted based on clinical manifestation of gaining or losing

Micronutrient deficiencies
- Vitamin A - Decreased immune response can lead to increased lung infections
- Vitamin D - Decreased specific immunity, decreased bone density
- Vitamin E - Hemolytic anemia - decreased total red blood cells
- Zinc - necessary enzyme cofactor for Carbonic anhydrase (CO2 + H2O \rightleftharpoons HCO3 + H)
 - Lack of carbonic anhydrase can promote CO2 retention
- Calcium - muscle weakness and neurological impairments
- Iron - Binds O2
- Selenium - powerful antioxidant

Glucocorticoids and Nutrition
- Increased appetite - weight gain
- Fluid retention
- Steroid induced DM
 - Treat with diet and medication as necessary
- Steroid induced bone loss/osteoporosis
 - Pt with prednisone dose of 7.5mg or more daily should be on a Bisphosphonate
- Delayed wound healing
Questions

References

- Weinstein, R.S. Teaching Topics from The New England Journal of Medicine; Glucocorticoid-Induced Bone Disease, July 7, 2011.